2018 Chemistry ATAR

Unit 4 Part II

Organic chemistry

Emperical formula

Isomerism

IMF

Revision package II

(a)	In the space below, draw the structural formula and name the organic product formed this reaction. (2 m	from arks)
	Name	
(b)	In the space below, draw and name an isomer of <u>propan-2-ol</u> that will react with acidit potassium permanganate solution to produce a carboxylic acid. (2 m	fied arks)
	Name	
(c)	With reference to part (b) above, write a balanced redox equation for the reaction that w occur. (2 marks)	ill
(d)	If some propan-1-ol and butanoic acid were mixed together and warmed in the presence sulfuric acid, draw and name the major organic product formed in the space below. (2 marks)	e of

Propan-2-ol can be readily oxidised using an acidified potassium permanganate solution.

Which one of the following lists places the compounds in their correct class?

	i.	ii	iii	iv
(a)	Ester	Aldehyde	Ketone	Carboxylic acid
(b)	Carboxylic acid	Ketone	Ester	Aldehyde
(c)	Carboxylic acid	Ester	Ketone	Aldehyde
(d)	Aldehyde	Ketone	Carboxylic acid	Ester

Which of the compounds shown above can be identified by using litmus paper alone?

- (a) i and iv
- (b) i and ii
- (c) ii and iii
- (d) i only.

What type of reaction is represented by the conversion of butan-1-ol to butanoic acid?

- (a) Addition
- (b) Hydrolysis
- (c) Oxidation
- (d) Substitution

An organic substance has an empirical formula of $C_3H_6O_2$. Which of the following is NOT a possible identity of the substance?

- (a) Propanoic acid
- (b) Ethyl methanoate
- (c) Methyl methanoate
- (d) Methyl ethanoate

Which of the following statement about the primary structure of proteins is correct?

- (a) They exhibit mainly hydrogen bonding within their structure.
- (b) They have been isolated from the same species of living organisms.
- (c) They have a specific sequence of amino acids.
- (d) They perform a similar function

Which of the following pairs of compounds would form ethyl butanoate when warmed with concentrated <u>sulfuric</u> acid?

Υ

- (a) CH₃CH₂OH and CH₃CH₂COOH
- (b) CH₃CH₃CH₂OH and CH₃COOH
- (c) CH₃CH₂CH₂COOH and CH₃CH₂OH
- (d) CH₃COOH and CH₃CH₂CH₂OH

X

Consider the two α -amino acids, \boldsymbol{X} and \boldsymbol{Y} , shown below.

$$\begin{array}{c|c} CH_2OH & O \\ \hline \\ H_2N-CH & C \\ OH \end{array} \qquad \begin{array}{c} O \\ H_2N-CH(CH_3)-C \\ OH \end{array}$$

The correct names for these two α -amino acids are:

- (a) alanine and valine respectively.
- (b) valine and threonine respectively.
- (c) serine and alanine respectively.
- (d) serine and lysine respectively.

Coconut oil contains an ester which gives the oil its distinctive odour. The ester was extracted and a series of experiments were carried out to determine the formula of this ester, which was known to contain only carbon, hydrogen and oxygen.

A 1.680 g sample was burned in excess oxygen and 4.100 g of carbon dioxide was produced.

A separate 1.990 g sample was burned in excess oxygen and 1.990 g of water was produced.

(a) Calculate the empirical formula of the ester in the coconut oil. (8 marks)

A further sample weighing 0.8100 g was vaporised and the gas produced was found to occupy a volume of 226.0 mL at 140.0 $^{\circ}$ C and 85.20 kPa.				
(b)	From this information, calculate the molecular formula of the ester. (4 marks)			
(c)	This same ester can also be synthesised in the laboratory by reacting pentan-1-ol and a carboxylic acid, using sulfuric acid as a catalyst. Using this information, draw the structural formula of the ester present in coconut oil.			